首先,LILAP利用Tn5转座酶和发卡结构的PacBio测序接头组成二聚体转座复合物,一步实现DNA片段化和测序接头连接(图1)。所有流程在单个试管内进行,最大限度减少了建库过程中的DNA损失,简化了建库流程。与PacBio公司的标准建库和低DNA扩增建库方法不同(Genes 2019; Genome Biol 2021),LILAP无需特殊实验仪器,所有试剂均可在第三方公司购买,建库成本降至每个样品10美元。同时,测序接头内还可添加条形码(barcode),用于多样本混合建库测序(Genome Biol 2010)。
图1. LILAP测序技术原理示意图
研究人员进一步使用黑腹果蝇ISO1品系对该技术进行评估,结果显示两个单只果蝇的读段测序质量中位数达到36(即碱基错误率低于0.02%)。从头组装的基因组N50数值超过6 MB,质量分数(QV)超过60(即碱基错误率低于10-6),保守单拷贝基因(BUSCO)组装覆盖度大于98%,远超已发表工作中单只果蝇基因组的质量。
此外,研究团队从基因组组装结果中检测到337个新近产生的结构变异,其中9个复杂结构变异为转座子插入引发序列重复或缺失。这些复杂事件涉及两种转座子:DNA转座子hobo(EMBO J 1986)和LTR逆转座子Jockey(Microbiol Spectr 2015)。研究还发现复杂结构变异插入位点附近富集non-B DNA序列(Trends Genet 2023),并提出转座插入后继续发生双链断裂,随后易于出错的DNA修复过程发生。
类似于结构变异,三代长读长测序也使成簇的串联单核苷酸多态性(clustered SNP, cSNP)的检测更为精准。两个单只果蝇总检测到1756个SNP位点,54.9%彼此临近,位于1000 bp窗口内。32.5%的cSNP由转座子贡献,在基因组内可找到供体,表明基因转换贡献了cSNP突变产生(Nature 2023)。进一步的分析结果支持基因转换可在DNA和RNA水平同时发生。
最后,研究人员在全基因组组装结果中发现了内共生微生物Wolbachia pipientis完整基因组,该微生物广泛分布于节肢动物中。研究团队检测了Wolbachia基因组内变异情况,发现了3个新突变,为后续研究共生菌和宿主的互作提供了新的线索。
综上所述,LILAP作为一种三代低DNA输入量的建库方法,在不扩增的前提下将PacBio测序DNA投入量降低至100 ng,适应于解析小型生物及其内共生体基因组。未来,LILAP可应用于更多场景(图2):DNA用量受限的小型生物多样性探究及较大物种的体细胞变异分析;果蝇个体水平的全基因组关联分析(GWAS);宿主-共生体的协同进化研究。
图2. LILAP的潜在应用场景。
a) 多样性基因组学及体细胞突变检测。b) 果蝇个体水平的GWAS研究。c) 宿主-共生体解析。
LILAP研究的第一作者为中科院动物所博士后贾行星、副研究员谭生军、博士生蔡英傲。通讯作者除张勇、阮珏外还包括贾行星与谭生军。郭言言、沈洁宇、张雅琼、马慧静、张青竹、陈金锋、乔格侠等合作者在文章写作、实验和计算分析等方面提供了大力支持。该研究得到了国家重点研发计划(2019YFA0802600),国家自然科学基金(32325014)和中国科学院基础前沿科学研究计划(ZDBS-LY-SM005)的支持。
https://www.nature.com/articles/s41467-024-49992-6
本文由 SEQ.CN 作者:白云 发表,转载请注明来源!