近日,英国伦敦大学学院大奥蒙德街儿童健康研究所和哥廷根大学医学中心的科研人员在Nature Communications发表了题为“Plasma proteomics identify biomarkers predicting Parkinson’s disease up to 7 years before symptom onset”的文章。研究团队对最近确诊的运动型PD患者、患有孤立性快速眼动睡眠行为障碍(iRBD)的运动前个体和健康对照(HC)组的血液样本进行靶向多重质谱分析,发现了8种与PD相关的血液生物标志物;随后,通过机器学习模型分析8种蛋白质的表达,准确识别了所有PD患者,并在运动发作前7年对79%的运动前个体进行分类预测,其中许多生物标志物与症状严重程度相关。该研究表明,血浆蛋白质组检测或有助于在运动症状出现前7年预测PD的发生。
文章发表在Nature Communications
图1.总研究流程
图2.PD组和HC组之间的差异蛋白(0阶段)
研究团队开发了一种高通量、多重质谱靶向蛋白质组学检测方法,对发现阶段确定的潜在生物标志物及其他几种蛋白质进行分析,最终构建了一个包含121种蛋白质的靶向蛋白质组学panel,旨在验证生物标志物并探究在发现阶段受到干扰的途径。
对于靶向蛋白质组学分析,研究团队纳入99名新发PD患者、36名HC个体、18名iRBD患者以及41名患有其他神经系统疾病(OND)的患者,采集其的血液样本进行分析验证。
图3.靶向蛋白质组学分析流程及结果
研究团队对上述121种蛋白质进行靶向蛋白质组学分析(图4),发现有32种可通过血浆检测到,其中23种被证实在PD和HC之间显著差异表达。此外,在iRBD患者与HC、OND患者与HC的比较中,鉴定出6种差异表达的蛋白质。新发PD组和iRBD组均显示丝氨酸蛋白酶抑制剂SERPINA3、SERPINF2和SERPING1以及中枢补体蛋白C3的表达上调;与HC组相比,颗粒蛋白前体蛋白在三个患者组(PD、iRBD和OND)中表达下调。OND和PD组中,PTGDS、CST3、VCAM1和PLD3蛋白的表达相同且上调。
图4. HC组和不同疾病组的显著差异表达蛋白质
通过通路分析,研究团队评估了PD和HC之间差异表达蛋白质参与及影响的生物过程(图5)。结果显示,共确定了三个主要通路簇,包括1)丝氨酸蛋白酶抑制剂或丝氨酸蛋白酶以及补体和凝血成分的表达;2)内质网(ER)应激/热休克相关蛋白;3)VCAM1、SELE和PPP3CB的表达。参与炎症反应的通路富集分数最高,如急性期反应信号通路、凝血系统和补体系统等。
图5. 差异表达蛋白参与神经元突触核蛋白疾病
研究团队应用机器学习方法,使用验证阶段PD和HC样本构建了判别式OPLS-DA模型(图6)。结果显示,该模型模型显著性极高,其能够准确区分PD和HC样本,并预测了72%的iRBD样本为PD。OPLS-DA模型的预测结果揭示,OND的个体异质性与PD和HC组不共享相同的蛋白组学特征,iRDB组则与新诊断PD患者具有共同的蛋白质组学特征。
图6. PD和对照受试者的SVM分类
为评估针对高危受试者的初始预测模型结果,研究团队开发并改进了靶向和多重蛋白质组学测试,仅定量从初始靶向蛋白质组学测定中易于可靠检测到的蛋白质(32种);纳入了包含54名iRBD患者的独立队列的146个纵向样本,并将其应用于OPLS-DA和SVM两个机器学习模型中。
图7. 一组新获得的iRBD样本(II 期)的预测结果
论文原文:
Hällqvist J, Bartl M, Dakna M, et al. Plasma proteomics identify biomarkers predicting Parkinson's disease up to 7 years before symptom onset. Nat Commun. 2024;15(1):4759. Published 2024 Jun 18. doi:10.1038/s41467-024-48961-3
https://www.nature.com/articles/s41467-024-48961-3
本文由 SEQ.CN 作者:白云 发表,转载请注明来源!